A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress
نویسندگان
چکیده
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
منابع مشابه
Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling
Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...
متن کاملZanthoxylum Alatum Attenuates Chronic Restraint Stress Adverse Behavioral Effects Via the Mitigation of Oxidative Stress and Modulating the Expression of Genes Involved in Endoplasmic Reticulum Stress in Mice
Introduction: The functions of the endoplasmic reticulum (ER) are important, particularly in the proteins’ synthesis, folding, modification, and transport. Based on traditional medicine and our previous studies on Zanthoxylum alatum in lipopolysaccharide-induced depressive behavior and scopolamine-induced impaired memory, the present study explored the role of hydroalcoholic extract of Z. alatu...
متن کاملAllantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملDiabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy
Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysf...
متن کاملMolecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction
The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a "glucolipotoxic" environment of the pancreatic islets, in in...
متن کامل